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Abstract
Audio information plays a rather important role in the increasing digital content that is avail-

able today, resulting in a need for methodologies that automatically analyze such content:

audio event recognition for home automations and surveillance systems, speech recogni-

tion, music information retrieval, multimodal analysis (e.g. audio-visual analysis of online

videos for content-based recommendation), etc. This paper presents pyAudioAnalysis, an

open-source Python library that provides a wide range of audio analysis procedures includ-

ing: feature extraction, classification of audio signals, supervised and unsupervised seg-

mentation and content visualization. pyAudioAnalysis is licensed under the Apache License

and is available at GitHub (https://github.com/tyiannak/pyAudioAnalysis/). Here we present

the theoretical background behind the wide range of the implemented methodologies, along

with evaluation metrics for some of the methods. pyAudioAnalysis has been already used in

several audio analysis research applications: smart-home functionalities through audio

event detection, speech emotion recognition, depression classification based on audio-

visual features, music segmentation, multimodal content-based movie recommendation

and health applications (e.g. monitoring eating habits). The feedback provided from all

these particular audio applications has led to practical enhancement of the library.

Introduction
The increasing availability of audio content, through a vast distribution of channels, has
resulted in the need for systems that are capable of automatically analyzing this content.
Depending on the individual types of distribution channels, the types of audio classes (speech,
music, etc), the existence of other media (e.g. visual information) and the application-specific
requirements, a wide range of different applications have emerged during the last years: music
information retrieval, audio event detection, speech and speaker analysis, speech emotion rec-
ognition, multmodal analysis, etc. The purpose of the pyAudioAnalysis library is to provide a
wide range of audio analysis functionalities through an easy-to-use and comprehensive pro-
gramming design.

pyAudioAnalysis can be used to extract audio features, train and apply audio classifiers, seg-
ment an audio stream using supervised or unsupervised methodologies and visualize content
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relationships. The library is written in Python, which is a high-level programming language
that has been attracting increasing interest, especially in the academic and scientific commu-
nity during the past few years. Python is rather attractive for computational signal analysis
applications mainly due to the fact that it provides an optimal balance of high-level and low-
level programming features: less coding without an important computational burden. The ini-
tial problem of high computational demands is partly solved by the application of optimization
procedures on higher level objects. In addition, compared to Matlab or other similar solutions,
Python is free and can lead to standalone applications without the requirement of huge prein-
stalled binaries and virtual environments. Another great advantage of Python is that there
exists an impressive number of libraries that provide functionalities related to scientific pro-
gramming. Table 1 presents a list of related audio analysis libraries implemented in Python, C/
C++ and Matlab.

Fig 1 illustrates a conceptual diagram of the library, while Fig 2 shows some screenshots
from the library’s usage. pyAudioAnalysis implements the following functionalities:

• Feature extraction: several audio features both from the time and frequency domain are
implemented in the library.

• Classification: supervised knowledge (i.e. annotated recordings) is used to train classifiers. A
cross-validation procedure is also implemented in order to estimate the optimal classifier

Table 1. RelatedWork.

Name Description

Yaafe A Python library for audio feature extraction and basic audio I/O (http://
yaafe.sourceforge.net/)

Essentia An open-source C++ library for audio analysis and music information
retrieval. Mostly focuses on audio feature extraction, basic I/O, while it also
provides some basic classification functionalities http://essentia.upf.edu/

aubio A C library for basic audio analysis: pitch tracking, onset detection,
extraction of MFCCs, beat and meter tracking, etc. Provides wrappers for
Python. http://aubio.org/

CLAM (C++ Library for Audio
and Music)

A framework for research / development in the audio and music domain.
Provides the means to perform complex audio signal analysis,
transformations and synthesis. Also provides a graphical tool. http://clam-
project.org/

Matlab Audio Analysis Library A Matlab library for audio feature extraction, classification, segmentation
and music information retrieval http://www.mathworks.com/matlabcentral/
fileexchange/45831-matlab-audio-analysis-library. Can be used as
companion matetrial for the book [1]

librosa A Python library that implements some audio features (MFCCs, chroma
and beat-related features), sound decomposition to harmonic and
percussive components, audio effects (pitch shifting, etc) and some basic
communication with machine learning components (e.g. clustering) https://
github.com/bmcfee/librosa/

PyCASP This Python library focuses on providing a collection of specializers
towards automatic mapping of computations onto parallel processing units
(either GPUs or multicore CPUs). These computations are presented
through a couple of audio-related examples.

seewave This is an R package for basic sound analysis and synthesis. Mostly
focusing on feature extraction and basic I/O. https://cran.r-project.org/web/
packages/seewave/index.html

bob An open general signal processing and machine learning library (C++ and
Python). http://idiap.github.io/bob/

A list of related libraries and packages focusing on audio analysis.

doi:10.1371/journal.pone.0144610.t001
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parameter (e.g. the cost parameter in Support Vector Machines or the number of nearest
neighbors used in the kNN classifier). The output of this functionality is a classifier model
which can be stored in a file. In addition, wrappers that classify an unknown audio file (or a
set of audio files) are also provided in that context.

• Regression: models that map audio features to real-valued variables can also be trained in a
supervised context. Again, cross validation is implemented to estimate the best parameters of
the regression models.

• Segmentation: the following supervised or unsupervised segmentation tasks are implemented
in the library: fix-sized segmentation and classification, silence removal, speaker diarization
and audio thumbnailing. When required, trained models are used to classify audio segments
to predefined classes, or to estimate one or more learned variables (regression).

• Visualization: given a collection of audio recordings pyAudioAnalysis can be used to extract
visualizations of content relationships between these recordings.

pyAudioAnalysis provides the following characteristics which, combined as a whole, are
unique compared to other related libraries:

Fig 1. Library General Diagram.

doi:10.1371/journal.pone.0144610.g001
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• General feature extraction and machine learning conceptual components are linked to form
complete audio classification and segmentation solutions.

• Both state-of-the-art and baseline techniques are implemented to solve widely used audio
analysis tasks.

• Pre-trained models are also provided for some supervised tasks (e.g. speech-music classifica-
tion, music genre classification and movie event detection).

• All provided functionalities are written using distinct and simple code so that the conceptual
algorithmic steps can be clearly presented in the context of an educational process.

Feature Extraction

Features description
This Section gives a brief description of the implemented features. For detailed description the
reader can refer to the related bibliography [1–3]. The complete list of extracted features in
pyAudioAnalysis is presented in Table 2. The time-domain features (features 1–3) are
directly extracted from the raw signal samples. The frequency-domain features (features 4–34,
apart from the MFCCs) are based on the magnitude of the Discrete Fourier Transform (DFT).
Finally, the cepstral domain (e.g. used by the MFCCs) results after applying the Inverse DFT
on the logarithmic spectrum.

Short and mid-term analysis
The aforementioned list of features can be extracted in a short-term basis: the audio signal is
first divided into short-term windows (frames) and for each frame all 34 features are calculated.
This results in a sequence of short-term feature vectors of 34 elements each. Widely accepted

Fig 2. pyAudioAnalysis provides easy-to-use and high-level Python wrappers for several audio analysis tasks.

doi:10.1371/journal.pone.0144610.g002
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short-term window sizes are 20 to 100 ms. In pyAudioAnalysis, the short-term process can be
conducted either using overlaping (frame step is shorter than the frame length) or non-over-
laping (frame step is equal to the frame length) framing.

Another common technique in audio analysis is the processing of the feature sequence on a
mid-term basis, according to which the audio signal is first divided into mid-term windows
(segments), which can be either overlaping or non-overlaping. For each segment, the short-
term processing stage is carried out and the feature sequence from each mid-term segment, is
used for computing feature statistics (e.g. the average value of the ZCR). Therefore, each mid-
term segment is represented by a set of statistics. Typical values of the mid-term segment size
can be 1 to 10 seconds. In cases of long recordings (e.g. music tracks) a long-term averaging of
the mid-term features can be applied so that the whole signal is represented by an average vec-
tor of mid-term statistics.

Tempo-related features
Automatic beat induction, i.e. the task of determining the rate of musical beats in time is a
rather important task, especially for the case of music information retrieval applications [4, 5].
In this library, a straightforward approach for tempo calculation has been implemented. It
adopts a local maxima detection procedure (see Fig 3), applied on a set of short-term feature
sequences. An aggregated histogram (see Fig 4) of the time distances between successive local
maxima is also computed and its maximum element corresponds to the most dominant time
distance between successive beats. Finally, this detected value is used to compute the BPM rate.
Apart from the BPM value itself, the ratio of the maximum histogram value by the total sum of
histogram values is used as a feature, corresponding to the overall “dominance” of the detected
beat rate.

Table 2. Audio Features.

Index Name Description

1 Zero Crossing
Rate

The rate of sign-changes of the signal during the duration of a particular frame.

2 Energy The sum of squares of the signal values, normalized by the respective frame
length.

3 Entropy of
Energy

The entropy of sub-frames’ normalized energies. It can be interpreted as a
measure of abrupt changes.

4 Spectral
Centroid

The center of gravity of the spectrum.

5 Spectral Spread The second central moment of the spectrum.

6 Spectral Entropy Entropy of the normalized spectral energies for a set of sub-frames.

7 Spectral Flux The squared difference between the normalized magnitudes of the spectra of
the two successive frames.

8 Spectral Rolloff The frequency below which 90% of the magnitude distribution of the spectrum
is concentrated.

9–21 MFCCs Mel Frequency Cepstral Coefficients form a cepstral representation where the
frequency bands are not linear but distributed according to the mel-scale.

22–
33

Chroma Vector A 12-element representation of the spectral energy where the bins represent
the 12 equal-tempered pitch classes of western-type music (semitone spacing).

34 Chroma
Deviation

The standard deviation of the 12 chroma coefficients.

Complete list of implemented audio features. Each short-term window is represented by a feature vector of

34 features listed in the Table.

doi:10.1371/journal.pone.0144610.t002
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It has to be noted that the two tempo-related features are only extracted for whole audio
recordings (they are not computed in a short-term basis). Therefore, they can only be added to
long-term averages of the mid-term features described in the previous section. For segment-
classifiers of general audio classes (e.g. music vs speech) tempo features are not applicable.

Audio Classification
Classification is probably the most important problem in machine learning applications. It
refers to the task of classifying an unknown sample (in our case audio signal) to a set of prede-
fined classes, according to some trained supervised model. The library provides functionalities
for the training of supervised models that classify either segments or whole audio recordings.
Support vector machines and the k-Nearest Neighbor classifier have been adopted towards this
end. In addition, a cross-validation procedure is provided in order to extract the classifier with
optimized parameters. In particular, the precision and recall rates, along with the F1 measure
are extracted per audio class. Parameter selection is performed based on the best average F1
measure.

High-level wrapper functions are provided so that the feature extraction process is also
embedded in the classification procedure. In this way, the users can directly classify unknown
audio files or even groups of audio files stored in particular paths.

Audio Regression
Regression is the task of estimating the value of an unknown variable (instead of distinct class
labels), given a respective feature vector. It can also be rather important in the context of an

Fig 3. Local maxima detection for beat extraction. An example of local maxima detection on each of the adopted short-term features. The time distances
between successive local maxima are used in the beat extraction process.

doi:10.1371/journal.pone.0144610.g003
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audio analysis application, in cases there are mappings from audio features to a real-valued var-
iable. A typical example is speech emotion estimation, where the emotions are not represented
by discrete classes (e.g. Anger, Happiness, etc) but by dimensional representations (e.g.
Valence—Arousal). The library supports SVM regression training in order to map audio fea-
tures to one or more supervised variables. In order to train an audio regression model the user
should provide a series of audio segments stored in separate files in the same folder. In addi-
tion, the user must provide a comma-separated-file (CSV), where the respective ground-truth
values of the output variable are stored. During the training phase, for each CSV file a separate
variable is trained.

Note that the regression training functionality also contains a parameter tuning procedure,
where a cross-validation evaluation is performed, similar to that of the classification case. How-
ever, the performance measure maximized in the context of the regression training procedure
is the Mean Square Error (MSE). In addition to that, for each tested parameter value, the MSE
of the training data is also calculated to provide a measure of “overfitting”. Finally, the parame-
ter tuning procedure returns the MSE of the “average estimator”, i.e. a method that always
returns the average value of the estimated parameter (based on the training data), in order to
provide a baseline performance measure. This is equivalent to the “random classifier” used as a
worst-case performance when evaluating classification methods.

Audio Segmentation
Audio segmentation focuses on splitting an uninterrupted audio signal into segments of homo-
geneous content. The term “homogeneous” can be defined in many different ways, therefore

Fig 4. Beat histogram example. An aggregated histogram of time distances between successive feature local maxima. The histogram’s maximum position
is used to estimate the BPM rate.

doi:10.1371/journal.pone.0144610.g004
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there exists an inherent difficulty in providing a global definition for the concept. The library
provides algorithmic solutions for two general subcategories of audio segmentation:

• the first contains algorithms that adopt some type of “prior” knowledge, e.g. a pre-trained
classification scheme. For that type of segmentation the library provides a fix-sized joint seg-
mentation—classification approach and an HMM-based method.

• the second type of segmentation is either unsupervised or semi-supervised. In both cases, no
prior knowledge on the involved classes of audio content is used. Typical examples are
silence removal, speaker diarization and audio thumbnailing.

Supervised audio segmentation
Fix-sized segmentation. This straightforward way of segmenting an audio recording to

homogeneous segments splits the audio stream into fixed-size segments and classifies each seg-
ment separately using some supervised model. Successive segments that share a common class
label are merged in a post-processing stage. In addition, the library extracts some basic statisics
(e.g. Fig 5).

HMM-based segmentation. Hidden Markov Models (HMMs) are stochastic automatons
that follow transitions among states based on probabilistic rules. When the HMM arrives at a
state, it emits an observation, which in the case of signal analysis is usually a continuous feature
vector. HMMs can be used for recognizing sequential labels based on a respective sequence of
audio feature vectors. This is achieved through finding the sequence of states that emits a par-
ticular sequence of observations with the highest probability. The answer to this question is
given by a dynamic programming methodology, the Viterbi algorithm [1, 2, 6].

pyAudioAnalysis provides the ability to train and test HMMs for joint audio segmentation-
classification. In order to train the HMMmodel, the user has to provide annotated data in a
rather simple comma-separated format that includes three columns: segment starting point, seg-
ment ending point and segment label. One annotation file must be provided for each respective
audio recording. The set of audio files and respective annotation files forms the training set.

Table 3 presents the performance results of the implemented joint segmentation-classifica-
tion approaches. Towards this end a dataset of annotated radio broadcast recordings has been
used, similar to the one used in [7], in the context of speech-music discrimination. This dataset
is composed of more than 50 recordings of 10 hours total duration. The classification task is
binary (speech vs music). Results indicate that the HMM segmentation-classification proce-
dure outperforms the fix-sized approach by almost 2% and 1% for the kNN and the SVM clas-
sifiers respectively.

Fig 5. Segmentation Example. Supervised segmentation results and statistics for a radio recording. A binary speech vs music classifier is used to classify
each fix-sized segment.

doi:10.1371/journal.pone.0144610.g005
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Unsupervised audio segmentation
Silence removal. A semi-supervised silence removal functionality is also provided in the

library. The respective function takes an uninterrupted audio recording as input and returns
segment endpoints that correspond to individual audio events, removing “silent” areas of the
recording. This is achieved through a semi-supervised approach which performs the following
steps:

• The short-term features of the whole recording are extracted

• An SVMmodel is trained to distinguish between high-energy and low-energy short-term
frames. In particular, 10% of the highest energy frames along with the 10% of the lowest are
used to train the SVMmodel

• The SVM classifier is applied (with a probabilistic output) on the whole recording, resulting
in a sequence of probabilities that correspond to a level of confidence that the respective
short-term frames belong to an audio event (and do not belong to a silent segment).

• A dynamic thresholding is used to detect the active segments.

Fig 6 shows an example of the silence removal method.
Speaker Diarization. Speaker diarization is the task of automatically answering the ques-

tion “who spoke when”, given a speech recording [8, 9]. Extracting such information can help
in the context of several audio analysis tasks, such as audio summarization, speaker recognition
and speaker-based retrieval of audio.

Speaker diarization is usually treated as a joint segmentation—clustering processing step,
where speech segments are grouped into speaker-specific clusters. This straightforward and
mainstream methodology is implemented in pyAudioAnalysis as a baseline speaker diarization
method, along with a two-step smoothing approach (see details below). However, it has been
proven that the choice of the feature space to represent speech is fundamental to the success of
most diarization steps. To produce a more feature—independent result, we have also selected
to implement a version of the Fisher Linear Semi-Discriminant analysis (FLsD) method pro-
posed in [10], which finds a near-optimal feature subspace in terms of speaker discrimination.
This method is completely unsupervised as it leverages information from the sequential struc-
ture of the speech signals. The particular steps of the speaker diarization method adopted in
pyAudioAnalysis are listed below:

• Feature extraction Extract MFCCs in a short-term basis and means and standard deviation
of these feature sequences on a mid-term basis, as described in the Feature Extraction stage.
Proposed short-term window size is 50 ms and step 25 ms, while the size of the texture win-
dow (mid-term window) is 2 seconds with a 90% overlap (i.e. mid-term step is 0.2 seconds).
In addition, pyAudioAnalysis implements the ability to add supervised knowledge during
the feature extraction stage. By “supervised” we do not refer to the speakers of the analyzed

Table 3. HMM joint segmentation classification performance.

Method Accuracy

Fix-sized window kNN 93.1%

Fix-sized window SVM 94.6%

HMM 95.1%

Average accuracy of the of each segmentation-classification method on a radio broadcasting dataset.

doi:10.1371/journal.pone.0144610.t003
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recording but to a set of predefined speakers model. For example, the mid-term feature statis-
tics vector is enhanced by adding the probabilities that the respective audio segments belongs
to a male or female speaker, where this gender classification model has been trained on a set
of annotated segments beforehand.

• (Optional) FLsD step In this stage we obtain the near-optimal speaker discriminative projec-
tions of the mid-term feature statistic vectors using the FLsD approach. In particular, each
fixed-size texture segment (2 sec) is assigned a new speaker thread and the feature vectors
within this segment are used to obtain the speaker-thread mean feature vector and scatter
matrix and also to update the overall within-class thread and mixed-class scatter matrices
used in the FLsD method. At the end, the scatter matrices are given as arguments to the
Fisher criterion to obtain the optimal speaker-discriminative subspace.

• Clustering A k-means clustering method is performed (either on the original feature space or
the FLsD subspace). This yields a sequence of cluster labels (one label per texture window).
The k-means algorithm takes as argument a user-provided number of clusters (speakers). In
case that this is not a-priori known, the clustering process is repeated for a range of number
of speakers and the Silhouette width criterion [11] is used to decide about the quality of the
clustering result in each case and therefore the optimal number of speakers.

• Smoothing A two-step smoothing process is applied combining (a) a median filtering on the
extracted cluster IDs and (b) a Viterbi Smoothing step.

Table 4 presents an evaluation of the implemented speaker diarization methods on a subset
of the widely used Canal9 dataset [12]. As performance measures, the average cluster purity

Fig 6. Silence Removal Example. An example of applying the silence removal method on an audio recording. Upper subfigure represents the audio signal,
while the second subfigure shows the SVM probabilistic sequence.

doi:10.1371/journal.pone.0144610.g006
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(ACP) and the average speaker purity (ASP) have been adopted, along with their harmonic
mean (F1 measure).

These results prove that the FLsD approach achieves a performance boosting, related to the
respective initial feature space. In addition, it is rather important to emphasize that the perfor-
mance of the FLsD is robust and independent to the initial feature representation: the overall
performance of the FLsD method ranges from 81% to 83%, despite the fact when the diariza-
tion method is applied directly on the initial feature space the performance varies from 61% to
78%. This proves that the FLsD approach manages to discover a speaker-discriminant subspace.

Audio Thumbnailing. This is the task of extracting the most representative part of a
music recording, which, in popular music, is usually the chorus. The library actually imple-
ments a variant of the method proposed in [13], which is based on finding the maximum of a
filtered version of the self-similarity matrix. The results (i.e. the extracted thumbnails) are
exported to respective audio files, while the self-similarity (along with the detected areas) can
also be visualized (see Fig 7).

Audio Visualization
Content-based visualization is rather important in many types of multimedia indexing, brows-
ing and recommendation applications, while it can also be used to extract meaningful conclu-
sions regarding the content relationships. In pyAudioAnalysis, a method that visualizes
content similarities between audio signals is provided. The adopted methodology is the
following:

• Given: a set of audio files (e.g. stored in WAV files stored in a particular path). Prior and
manual categorization information can also be provided through the filenames theirselves: if
the filename format: <category name> — <sample name> is provided, then the input
signals are supposed to be classified to the given categories. This information is either used
only for visualization or for supervised dimensionality reduction. For example, the filename
Blur — Charmless Man.wav assigns the category label “Blur” to the signal. Such infor-
mation can also be driven fromMP3 tag information: for example pyAudioAnalysis provides

Table 4. HMM joint segmentation classification performance.

FLsD StWin (ms) ACP ASP F1

No MFCCs (mean) 77 72.5 74.5

Yes MFCCs (mean) 83 80 81.5

No MFCCs (mean), Gender 73 70 71.5

Yes MFCCs (mean), Gender 83 81 82

No MFCCs (mean-std) 76 72 74

Yes MFCCs (mean-std) 84 82 83

No MFCCs (mean-std), Gender 78 73 75.5

Yes MFCCs (mean-std), Gender 83 81 82

No MFCCs (mean-std), Spectral 70 63 66.5

Yes MFCCs (mean-std), Spectral 85 81 83

No MFCCs (mean-std), Spectral, Gender 68 61 64.5

Yes MFCCs (mean-std), Spectral, Gender 85 81 83

Performance measures of the implemented speaker diarization method for different initial feature sets. The

FLsD method provides a more robust behavior independently from the initial feature space, since it helps to

discover a speaker-discriminant subspace.

doi:10.1371/journal.pone.0144610.t004
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an MP3-to-WAV conversion functionality that produces files with the aforementioned file-
name format, where the category name is taken from the “artist”MP3 tag.

• Extract mid-term features and long-term averages in order to produce one feature vector per
audio signal.

• The feature representation can be (optionally) projected to a lower dimension. Towards this
end, either Principal Component Analysis (PCA) or Linear Discriminant Analysis (LDA) is

Fig 7. Audio thumbnailing example. Example of a self-similarity matrix for the song “Charmless Man” by Blur. The detected diagonal segment defines the
two thumbnails, i.e. segments (115.0sec–135.0sec) and (156.0sec–176.0sec).

doi:10.1371/journal.pone.0144610.g007
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used. PCA is unsupervised, however LDA requires some type of supervised information. If
available, this infomartion is stemming from the aforementioned “category” label.

• A similarity matrix is computed based on the cosine distances of the individual feature
vectors.

• The similarity matrix is used to extract a chordial representation (Fig 8) that visualize the
content similarities between the audio recordings. Towards this end, d3js is used (http://
d3js.org/). d3js is a JavaScript library for manipulating and visualizing documents based on
data.

Fig 8. Chordial Content Visualization Example.Different colors of the edges and nodes (recordings) represent different categories (artists in our case).

doi:10.1371/journal.pone.0144610.g008
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Implementation Issues

Dependencies
pyAudioAnalysis is written in Python v2.7 using widely used open libraries. The most impor-
tant of these external dependencies are the following:

• Numpy (http://www.numpy.org/) is a fundamental library for numeric computations using
Python. It has been mainly used for it’s arrays and matrices representation and handling,
along with a set of respective basic array functionalities.

• Matplotlib (http://matplotlib.org/) offers a 2D plotting functionality, similar to that of
MATLAB.

• SciPy (http://www.scipy.org/) is the core of the SciPy Python-based ecosystem that provides
optimized numeric computations and scientific routines. pyAudioAnalysis uses SciPy for
basic signal processing procedures (e.g. convolution), linear computations, FFT computation
and WAVE file IO.

• MLpy (http://mlpy.sourceforge.net/) is a Python package for Machine Learning and it has
been mainly used for its kMeans and SVM implementation (SVM is actually a python wrap-
per of the LibSVM implementation).

• sklearn (http://scikit-learn.org/stable/) is another Machine Learning and Data Mining pack-
age and has been used for its LDA and HMM implementations.

Computational Demands
Python, as a high-level programming language, introduces a high execution overhead (related
to C for example), mainly due to its dynamic type functionalities and its interpreted execution.
pyAudioAnalysis has managed to partly overcome this issue, mainly through taking advantage
of the optimized vectorization functionalities provided by Numpy. Table 5 presents the
computational demands on three different computers that cover a very wide range of computa-
tional power: (1) a standard modern workstation with a Intel Core i7-3770 CPU (4 cores at
3.40GHz) (2) a 2009 HP Pavilion dm3-1010 laptop with a Intel Pentium SU4100 Processor (2

Table 5. Realtime ratios for some basic functionalities and different devices.

Procedure Realtime Ratio 1 Realtime Ratio 2 Realtime Ratio 3

Short-term feature extraction 115 16 2.2

Mid-term segment classification 100 14 2

Fix-sized segmentation-classification 100 13 2

HMM-based segmentation-classification 100 13 2

Silence Removal 105 13 2

Audio Thumbnailing 450 16 7

Diarization—no FLsD 28 5 0.6

Diarization—FLsD 7 2 0.3

Realtime ratios express how many times faster than the actual signal’s duration is the respective computation. The particular values have been calculated

for mono—16kHz signals. In addition, a 50 ms short-term window has been adopted. Both of these parameters (sampling rate and short-term window

step) have a linear impact on the computational complexity of all functionalities. All of the functionalities are independent to the input signal’s duration

apart from the audio thumbnailing and the diarization methods. For these methods, the particular ratios have been extracted using a 5-minute signal as

input.

doi:10.1371/journal.pone.0144610.t005
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cores at 1.3GHz) and (3) a Raspberry PI 2 with a 700 MHz single-core ARM1176JZF-S CPU.
In particular, we present the computational ratios, i.e. the ratio of the total signal duration by
the execution time. So, “115 x realtime”means that a 1-hour recording is processed by the
respective procedure in almost 31 seconds. Most of the procedures are executed in high time
performance ratios making them practical for real-world problems.

Code organization
The library code is organized in six Python files. In particular:

• audioAnalysis.py: implements the command-line interface of the basic functionalities
of the library, along with some recording functionalities.

• audioFeatureExtraction.py implements all feature extraction methods.

• audioTrainTest.py implements the audio classification prodecures.

• audioSegmentation.py implements audio segmentation functionalities, e.g. fixed-
sized segment classification and segmentation, speaker diarization, etc.

• audioBasicIO.py includes some basic audio IO functionalities as well as file convertions

• audioVisualization.py produces user-friendly and representative content
visualizations

All basic functionalities can be achieved in a command-line manner through audioAna-
lysis.py. Of course, the programmer can also use the individual files for including particu-
lar methods via coding. For example, training a classifier from code can be achieved as follows:

from pyAudioAnalysis import audioTrainTest as aT aT. featureAndTrain([“Classical/”, “Elec-
tronic/”, “Jazz/”], 1.0, 1.0, aT. shortTermWindow, aT. shortTermStep, “svm”, “svmMusic-
Genre3”, True)

or from command-line (via audioAnalysis.py) as follows:

python audioAnalysis.py trainClassifier -i Classical/ Electronic/ Jazz/ –method svm -o
svmMusicGenre3

pyAudioAnalysis has a rather detailed wiki (https://github.com/tyiannak/pyAudioAnalysis/
wiki) that shows how to call every single functionality described in this paper, either from com-
mand-line or via source code.

Use-cases
pyAudioAnalysis has been directly used in several audio analysis applications. Some examples
include:

• Content-based multimodal movie recommendation [14].

• Depression estimation [15].

• Speech emotion recognition [16].

• pyAudioAnalysis has been also used for evaluating features and segmentation approaches in
the context of the BitBite startup (http://www.thebitbite.com/) which focuses on providing
real-time methods for monitoring people’s eating habits.

• Estimating the quality of urban soundscape using audio analysis [17]. In this work, pyAu-
dioAnalysis has been used to extract audio features, perform semi-supervised
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dimensionality reduction and to map these content representations to soundscape quality
levels through regression.

Conclusions
In this paper we have presented pyAudioAnalysis, an open-source Python library that imple-
ments a wide range of audio analysis functionalities and can be used in several applications.
Using pyAudioAnalysis one can classify an unknown audio segment to a set of predefined clas-
ses, segment an audio recording and classify homogeneous segments, remove silence areas
from a speech recording, estimate the emotion of a speech segment, extract audio thumbnails
from a music track, etc. High-level wrappers and command-line usage are also provided so
that non-programmers can achieve full functionality. The range of audio analysis functionali-
ties implemented in the library covers most of the general audio analysis spectrum: classifica-
tion, regression, segmentation, change detection, clustering and visualization through
dimensionality reduction. Therefore pyAudioAnalysis can be used as a basis to most general
audio analysis applications.

pyAudioAnalysis is kept being enhanced and new components are to be added in the near
future. In particular, the main ongoing directions are: (a) implementation of an audio finger-
printing functionality to be adopted in the context of an audio retrieval system (b) optimize all
feature extraction functionalities by accelerating the critical functions using NVIDIA GPUs
parallelization through Cuda programming.
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